
Matrix Algebra 
Matrices 

A matrix is a rectangular array of elements arranged in rows and columns, e.g.: 
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A , where A here is a 3 row by 2 column matrix. 

More generally, a matrix of this size or dimension (3 by 2) can be written as 
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A  where the ija ’s are the elements of the matrix.  

Even more generally, the ( )r c×  matrix A can be written as: 
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where ;  1, , ;  1, , ;ija i r j c = = = A    and r is the number of rows and c the number of columns 

in the matrix. 

 

Special Matrices 

1) the square matrix (r = c), e.g. 
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2) the 1-d row vector (an 1r×  matrix), e.g. 
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3) the 1-d column vector (a 1 c×  matrix), e.g. 

[ ]11 12 1 ;cb b b=b    

4) a scalar, or a 1 1×  matrix:  [ ]11a=a   

5) the zero matrix: 
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6) an r r×  diagonal matrix: 
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7) the identity matrix: 
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 (a square matrix of zeros, with ones along the diagonal), and  

8) a vector of ones:  1 [ ]1 1 1 .=    

 

Matrix operations and further definitions: 

1) transposition, e.g., if 
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C C  or more generally, if A (an r c× matrix) is 
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2) a matrix can be said to be symmetric if ;′A = A   

3) equality:  ,  if ,  all  and .ij ija b i j=A = B   

4) addition and subtraction (of corresponding elements):  If 
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More generally, ,  where .ij ij ijc a b= +C = A + B   

In order to be added or subtracted, the two matrices must be conformable.  In the case of addition 
or subtraction, they must be of the same shape.  If A is a p row by q column matrix, which can be 
written as pAq, then B must also be a p row by q column matrix, and the resultant matrix C will 
also be a p row by q column matrix, or pCq = pAq + pBq. 

5) scalar multiplication (multiplication of each element by the same scalar value):  if 
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6) matrix multiplication:  if 
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Note that matrix multiplication requires that the matrices be conformable for multiplication, e.g. if 
A is a p row by q column matrix, and B is a q row by r column matrix then pAq and qBr can be 
said to be conformable (because A has q columns, and B has q rows), and their product C can be 
obtained with dimensions of p rows by r columns, or .p r p q r=C A B    

Note that A postmultiplied by B is not conformal, except if p = r. 



Matrix multiplication can also be considered as a set of sums of cross-products, one for each 
element of the product matrix, or 
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7) matrix inversion:  For a square matrix A, the inverse of A is the matrix that when premultiplied 
or postmultiplied by A yields the identity matix I, or 

1 1 .− −= =A A AA I   

Matrix inversion is analogous in some ways to scalar division: 

If (1/x) is the inverse of x, then 1 11 1.x xx x x
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8) Linear combinations can be compactly written in matix terms.  If 
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then this system of equations can be written in more compact form as  
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9)  Eigenvalues and eigenvectors.  If R is a ( )p p×  square matrix, then there is another ( )p p×
square matrix E, such that 

,=RE EV  where V is a ( )p p× diagonal matrix. 

The first column of these matrices can be written as 1 1 1 1 1,  or ( ) .λ λ= − =Re e R I e 0   

10) Matrix quadratic forms:  If A is an ( )n n× and x is an ( 1)n×  column vector, then 
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