Multiple Regression Analysis in Matrix Form

Define three vectors (y, b and e) and a matrix (X) as follows:
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The standard multiple (linear) regression equation with p predictor variables and N observations

can then be rewritten using these vectors and the matrix as
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or, in a more compact way that still makes explicit the dimensions of the vectors and the matrix,
(and also illustrates their conformability for matrix multiplication)
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or even more compactly (dropping the explicit indication of the size of the vectors and matrix) as

y=Xb+e.

The optimization problem in regression analysis is to minimize the residual sum of squares S:
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S can be minimized by setting the following partial derivative to 0:
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Rearranging, X'Xb = X'y, and by multiplying both sides of this equation by (X'X)™?, i.e.,
(X'X)™X'Xb = (X'X)* X'y, the regression coefficients, b, can be obtained as follows:

b=(X'X)"Xly.



