
Multiple Regression Analysis in Matrix Form 

Define three vectors (y, b and e) and a matrix (X) as follows: 
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The standard multiple (linear) regression equation with p predictor variables and N observations 

 0 1 1 2 2 , where 1, , ,i i i p ip iy b b x b x b x e i N         

can then be rewritten using these vectors and the matrix as 
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or, in a more compact way that still makes explicit the dimensions of the vectors and the matrix, 
(and also illustrates their conformability for matrix multiplication) 

 1 1 1 1,N N p N y X b e  

or even more compactly (dropping the explicit indication of the size of the vectors and matrix) as 

 . y Xb e  

 

The optimization problem in regression analysis is to minimize the residual sum of squares S: 
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S can be minimized by setting the following partial derivative to 0: 
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Rearranging, , X Xb = X y  and by multiplying both sides of this equation by 1( ) ,X X  i.e., 
1 1( ) ( ) ,    X X X Xb = X X X y the regression coefficients, ,b  can be obtained as follows: 

 1( ) . b X X X y   

 


