Analysis	Test statistic	Null hypothesis	Alternative hypothesis	Results	p-value	significance	decision
Difference- of- means test	<i>t</i> (two-tailed) (see note 1)	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	big <i>t</i> (> +2.0 or < -2.0)	small <i>p</i> (< 0.05)	yes (significant difference of means)	reject H _o , accept H _a
				small <i>t</i> (< +2.0 and > -2.0)	big <i>p</i> (> 0.05)	no	don't reject H _o
	<i>t</i> (one-tailed) (see note 2)	$\mu_l > \mu_2$	$\mu_1 \leq \mu_2$	big <i>t</i> (> +2.0 or < -2.0)	small <i>p</i> (< 0.05)	yes (significant difference of means)	reject H _o , accept H _a
				small <i>t</i> (< +2.0 and > -2.0)	big <i>p</i> (> 0.05)	no	don't reject H
Analysis of variance (ANOVA)	F (see note 3)	$\mu_1 = \mu_2 = \mu_3$ $= \dots = \mu_k$		big F	small <i>p</i> (< 0.05)	yes (significant difference among means)	reject H _o , accept H _a
				small F	big <i>p</i> (> 0.05)	no	don't reject H
Homogeneity of variance (Bartlett)	$\frac{X^2}{(\text{see note 4})}$	$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \dots = \sigma_k^2$	$\sigma_1^2 \neq \sigma_2^2 \neq \\ \sigma_3^2 \neq \dots \neq \sigma_k^2$	big X ²	small <i>p</i> (< 0.05)	yes (sig. difference among variances)	reject H _o , accept H _a
				small X ²	big <i>p</i> (> 0.05)	no	don't reject H
Regression analysis	F (see note 5)	no relationship between response and predictor vars.	relationship between response and predictor vars.	big F	small <i>p</i> (<0.05)	yes (there is a relationship)	reject H _o , accept H _a
				small F	big <i>p</i> (>0.05)	no (there is not a relationship)	don't reject H _o
	<i>t</i> (see note 6)	$b_p = 0$	$b_p e 0$	big <i>t</i> (> +2.0 or < -2.0)	small <i>p</i> (< 0.05)	yes (<i>x_p</i> is an important predictor)	reject H _o , accept H _a
				small $t (< +2.0 and > -2.0)$	big <i>p</i> (> 0.05)	no $(x_p \text{ is not an } important predictor})$	don't reject H _o

Interpreting test statistics, p-values, and significance

Notes:

1) The null hypothesis here is that the means are equal, and the alternative hypothesis is that they are not. A *big t, with a small p*-value, means that the null hypothesis is discredited, and we would assert that the *means are significantly different* (while a small *t*, with a big *p*-value indicates that they are *not*

significantly different).

2) The null hypothesis here is that one mean is greater than the other, and the alternative hypothesis is that it isn't. A big *t*, with a small *p*-value, means that the null hypothesis is discredited, and we would assert that the *means are significantly different* in the way specified by the null hypothesis (and a small *t*, with a big *p*-value means they are *not significantly different* in the way specified by the null hypothesis).

3) The null hypothesis here is that the group means are all equal, and the alternative hypothesis is that they are not. A big *F*, with a small *p*-value, means that the null hypothesis is discredited, and we would assert that the *means are significantly different* (while a small *F*, with a big *p*-value indicates that they are *not significantly different*).

4) The null hypothesis here is that the group variances are all equal, and the alternative hypothesis is that they are not. A *big* X^2 , (Chi-squared) value, with a small *p*-value, means that the null hypothesis is discredited, and we would assert that the group variances *are significantly different* (while a small X^2 , with a big *p*-value indicates that they are *not significantly different*).

5) The null hypothesis here is that there is not a general relationship between the response (dependent) variable and one or more of the predictor (independent) variables, and the alternative hypothesis is that there is one. A big *F*, with a small *p*-value, means that the null hypothesis is discredited, and we would assert that there is a *general relationship between the response and predictors* (while a small *F*, with a big *p*-value indicates that *there is no relationship*).

6) The null hypothesis is that the value of the *p*-th regression coefficient is 0, and the alternative hypothesis is that it isn't. A big *t*, with a small *p*-value, means that the null hypothesis is discredited, and we would assert that the *regression coefficient is not 0* (and a small *t*, with a big *p*-value indicates that it is *not significantly different from 0*).